
Turing’s Dreampond

Gordon Briggs
gmb35@cornell.edu

December 3, 2007

1 Introduction

One of the phenomena which had peculiarly attracted my attention was the
structure of the human frame, and, indeed, any animal endued with life. Whence,
I often asked myself, did the principle of life proceed? It was a bold question, and
one which has ever been considered as a mystery...When I found so astonishing
a power placed within my hands, I hesitated a long time concerning the manner
in which I should employ it. Although I possessed the capacity of bestowing
animation, yet to prepare a frame for the reception of it, with all its intricacies
of fibres, muscles, and veins, still remained a work of inconceivable difficulty and
labour. I doubted at first whether I should attempt the creation of a being like
myself, or one of simpler organisation; but my imagination was too much exalted
by my first success to permit me to doubt of my ability to give life to an animal
as complex and wonderful as man.

- Mary Shelley, Frankenstein

As Shelley’s tragic figure of Victor Frankenstein was consumed by his pursuit to man-

ufacture life, so has the fascination with the genesis of life and intelligence dwelled within

humanity’s collective consciousness. We have extensively pondered not only our own ori-

gins, but the possibility of playing the role of life’s originator. The Greeks narrated how

Pygmalion sculpted Galatea. In Ovid’s Metamorphoses, Prometheus’ sin was not of giving

man fire, but of imbuing man with life, having sculpted him from the dust of the earth. In-

deed, modern science fiction now abounds with cautionary tales of our intelligent creations

running amok and usurping our dominance on Earth.

The potential to create machines that act as living, thinking beings do inspires and

evokes passionate opinions within ourselves. It raises fundamental questions regarding the
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cognitive nature of our creations and our own sapience. Can machines think? How do

we tell if an entity is truly sentient? Are we ultimately machines ourselves? How do we

create machines that think? Philosophers and scientists have contemplated and debated

the answers to these inquiries for years, while authors and storytellers have woven countless

stories exploring their implications.

1.1 Artificial Intelligence

However, unlike the literary and mythic characters who sought to build artificial beings

through alchemical processes and petitions to the divine, the modern field of Artificial

Intelligence (AI), which concerns the understanding and building of intelligent systems [3],

involves the application of mathematical and computational theory in order to generate

rational solutions to complex problems.

Modern AI can trace its own origins back to around the early 1950s, roughly correspond-

ing to the advent of the modern computer [2]. AI’s early pioneers programmed comput-

ers and devised algorithms that tackled problems ranging from game-playing to theorem-

proving. Allen Newell and Herbert Simon, developed the Logic Theorist, a program capable

of proving theorems in logic, which they applied to various theorems in the work Principia

Mathematica [3]. Arthur Samuel of IBM authored a checkers-playing program that eventu-

ally reached world-class player level [2]. In 1965, Joseph Weizenbaum of MIT constructed

ELIZA, a program that conversed with a human user in English [2].

These are but a few of the instances of programs that were developed in the early days

of AI that successfully performed complex and intelligent actions. They utilized techniques

based on of formal symbol manipulation, such as comprehensive or guided searches of a

problem’s state space and logical inference and resolution algorithms. Even the task of

emulating human conversation, as ELIZA could, was accomplished using such traditional

AI approaches. These traditional AI approaches, involving the application of logical and

mathematical principles, constitutes a top-down engineering process, in which the designer is

fully cognizant of all the dynamics involved with the environment and designs the intelligent

system accordingly.
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1.2 Evolution and AI

Even though the field of AI is often seen as the endeavour of man as an intelligent designer,

there has always been strong connection between the fields of evolution and AI. Alan Turing,

one of the founders of the field of Computer Science and AI, wrote a seminal article in 1950,

entitled “Computing Machinery and Intelligence”, in which he presented his famous Turing

test and discussed the prospects of developing intelligent machines. However, in this article,

Turing wrote [1]

There is an obvious connection between this process and evolution, by the iden-
tifications: Structure of the child machine = Hereditary material; Changes =
Mutations; Natural selection = Judgement of the experimenter

One may hope, however, that this process will be more expeditious than evolu-
tion. The survival of the fittest is a slow method for measuring advantages. The
experimenter, by exercise of intelligence, should be able to speed it up. Equally
important is the fact that he is not restricted to random mutations. If he can
trace a cause for some weakness he can probably think of the kind of mutation
which will improve it.

Turing’s description of the human creative process, however accurate, is perhaps exces-

sively optimistic when applied to our desires to construct intelligent agents. Our ability to

ascertain what changes of the machine must be made in order to create a machine with

higher cognitive abilities by the exercise of [our] intelligence is woefully slim. The fact is,

our knowledge of our human cognition and the ability to characterize and explain it is still

tremendously lacking. Yet, it is quite fascinating that Turing chooses to compare our quest

to create intelligent machines to the evolutionary process.

Concerning the genesis of life on Earth, the esteemed evolutionary biologist Stephen Jay

Gould wrote in Time magazine [4]:

The life that we know, however wondrous in extent and variety, all proceedsor so
our best inferences tell usfrom one single experiment. The biochemical features
underlying this amazing variety and the coherent fossil record of 3.5 billion years
(implying a single branching tree of earthly life with a common trunk) indicate
that every living thing on Earth, from the tiniest bacterium on the ocean floor
to the highest albatross that ever flew in the sky, arose as the magnificently
diversified evolutionary outcome of one single experiment performed by nature,
one origin of life in the early history of one particular planet
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Intelligent life and the cognitive abilities found manifest in it are emergent outcomes

of evolution. Since the evolutionary process has already generated instances of sentience,

we cannot ignore this mechanism in our own attempts to build intelligent systems. I wish

to explore this topic by discussing a few biologically-inspired techniques found in the field

of AI, applying them to a simple problem, and then discussing the vast implications and

avenues of further study that logically follow.

2 Biology and AI

Computer Science, especially in the field of AI, has drawn much inspiration from emulating

nature. There are two notable techniques that seek to model phenomena found in the

biological world, Artificial Neural Networks and Genetic Algorithms.

2.1 Artifical Neural Networks

Artificial Neural Networks (ANNs) were first implemented in 1951 by Marvin Minsky and

Dean Edmonds, building the SNARC neural network computer based off of the mathematical

model of neurons developed by Warren McCulloch and Walter Pitts [3]. However, there was

a lull in neural network research for a few decades until the advent of the backpropagation

algorithm for supervised network training and its successful implementation (around the

early 1980s). ANNs attempt to emulate the operation of a brain my modeling it at the

neuronal levelmodeling complex networks of interconnected individual neurons.
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Figure 1 - Model of an ANN [5] .

Each neuron is modeled with several input links, each assigned a bias weight, and some

number of output linksusually connected to the input links of other neurons. The bias

weights act as approximations to the inhibitory and excitatory connection behaviors found

in actual neurological structures. In order to generate an output signal, the neuron sums

the product of each input signal and the associated bias weight, then applies some nonlinear

activation function to this sum [3].

The strength of ANNs lies in two attributes. First, as a purely mathematical construct,

ANNs are able to approximate any continuous function given the appropriate network topol-

ogy. This result was demonstrated by the Cybenko Theorem [7]. The second strength of

ANNs involve the abilities of these networks and simple units to learn and adapt to complex

tasks such as pattern recognition. Learning is simply a matter of appropriately adjusting

each bias weight to generate better output values, either be comparing the outputs to de-

sired outputs, as in supervised learning techniques such as backpropagation, or through

some unsupervised learning such as Hebbian learning. Connecting these artificial neurons

in increasingly complex network topologies yields increasingly complex system behavior.

Recurrent neural networks (RNNs), which contain backward neuronal (feedback) connec-

tions, have been demonstrated to be quite dynamic and hard to characterize. Certain RNN
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configurations have even demonstrated abilities akin to short-term and long-term memory.

These dynamic and hard to characterize behaviors can be regarded as emergent properties

of the ANN architecture.

2.2 Genetic Algorithms

Evolutionary algorithms, also known as genetic algorithms (GAs) are stochastic, heuristic

search algorithms inspired by natural evolutionary processes. The general scheme of a

GA involves a population of randomly generated individuals, represented by a set of genes

(implemented with binary bit strings or some other method of trait encoding) each describing

a phenotypical expression. For instance, if we wanted to use a binary encoding for the length

of a limb, we could use the following scheme.

g(i) = x1
i x

2
i x

3
i ...x

n
i

where g(i) is the genotype of individual i, and xj
i is a ‘gene’ with value either equal to

0 or 1. Thus the phenotypic expression for limb length could be derived from the genotype

by:

p(i) =
n∑

j=1

xj
i

Thus we see if we had an individual i such that g(i) = 0100011, we would see that

p(i) = 0 + 1 + 0 + 0 + 0 + 1 + 1 = 3. Individual i would have a phenotypic expression of 3,

whatever that means in the given context (limb length, etc.).

Every individual in the population is evaluated and assigned a fitness value by some fit-

ness function. Subsequently, a new generation is created by randomly selecting individuals,

favoring those with higher fitness, to breed. This breeding involves the exchange of genotype

data through a probabilistically governed process called crossover, the frequency of which

is determined by a crossover rate. If crossover breeding occurs, then genetic information is

swapped through some crossover operation, else the offspring individuals will be identical to

parent individuals. Mutation of offspring gene data can also occur, the frequency of which
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is determined by a mutation rate and is computed during each breeding. For instance, using

our above binary encoding scheme, the creation of a new individual might look something

like:

g(1) = 0110011

g(2) = 1001000

Child(g(1), g(2)) = 10|10011 = 1010011

As one can see, the crossover operation used above was simply taking the genetic material

from one individual at some point and combining it with the other at the corresponding

point.

This procedure is repeated for a set number of generations, or until some fitness crite-

rion has been fulfilled [3]. Essentially, genetic algorithms implement a artificial selection

process, weeding out individuals ranked poorly by an arbitrarily defined fitness function

and conversely propagating the genotypes of individuals that do satisfy the fitness function.

The mutation and crossover procedures are designed to generate new individual designs

to explore all possible solutions to the optimization problem posed by the fitness function.

Mutation would constitute a local search of all individual solutions near a given individ-

ual, while crossovers would comprise a more global heuristic search, guided by the traits of

parents.

Natural evolution occurs in similar algorithmic framework, though it is clear that GAs

are still quite high-order approximations of what occurs in nature. The complex biochemical

operations found in DNA recombination and mutation are approximated using probabilisti-

cally determined crossover and mutation operators. The natural selection of fit individuals,

manifested in the death of unfit individuals and relative prosperity of fit individuals in na-

ture, has been again approximated as a stochastic operation. Genetic algorithms rely on

the emergent phenomenon of the propagation of better designed individuals throughout the

simulation generations in order to properly function.
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3 Pole Position

In order to demostrate both the aforementioned biologically inspired AI techniques, we will

apply both methods toward solving a basic control problem. The problem of pole balancing

is often used to develop and test control systems. Clearly, this endeavour is not at the level

of beating Gary Kasporov at chess, but it does serve to illustrate how we can apply these

techniques to develop intelligent behaviors. The problem involves maintaining a vertically

oriented pole within some angle of the vertical. The difficult lies in the fact that the pole

is precariously balanced on a cart that must constantly be in motion. There is a constant

force acting on the cart that can either be directed to the left or right. Therefore, it is the

task of the control algorithm to define a function f such that

F = |F |sign(f(θ, v)) (1)

that is to say when the function f is negative based of the pole’s angle θ and velocity v ,

the force is directed to the left (in the negative direction), and if f is positive the force F is

directed to the right. An intelligent control algorithm should be able to maintain the pole’s

balance. So how do we go about developing such a control algorithm? One might first be

tempted to try to develop one him or herself. Surely, this sounds like a physics problem

that someone with a mathematical inclination could reason out. Let us then examine the

physical model that will simulate the problem.

3.1 Physical Model

In order to model the movement of the pole, I used a model described in [6]. We must keep

track of a multitude of variables that I have listed below:
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Variable Description

r Length of the Pole (in meters)

g Force of gravity (-9.81 m
s2 )

mp Mass of the Pole (in kg)

mc Mass of the Cart (in kg)

Ft Force acting on the cart at time t. (Remember could be either −|Ft| or |Ft|).

δ Simulation timestep (in seconds)

θt Angle of the Pole at time t

θ
′

t Angular velocity of the Pole at time t

θ
′′

t Angular acceleration of the Pole at time t

xt Position of the Pole/Cart at time t

x
′

t Velocity of the Pole/Cart at time t

x
′′

t Acceleration of the Pole/Cart at time t

θmax Maximum angle the Pole is allowed to deviate from the vertical.

The equations of motions provided by [6] are

θ
′′

t =
g sin(θt) + cos(θt)

−Ft−mprθ
′2
t sin(θt)

mc+mp

r( 4
3 − mpcos2(θt)

mc+mp
)

(2)

x
′′

t =
Ft + mpr(θ

′2
t sin(θt) − θ

′′

t cos(θt))
mc + mp

(3)

The updates in the model are simulated using Euler’s method. Thus we obtain:

xt+1 = xt + δx
′

t

x
′

t+1 = x
′

t + δx
′′

t

θt+1 = θt + δθ
′

t

θ
′

t+1 = θ
′

t + δθ
′′

t
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Clearly, this is a rather involved system. The equations of motion are sufficient complex

(and ugly) such that it would be rather painful to attempt to derive our desired control

function f(θ, v). So instead, let us attempt to evolve a solution.

3.2 Our Solution

We know that ANNs can approximate any continuous function given the appropriately

chosen weights. We are going to use a genetic algorithm to choose those weights for us.

3.2.1 ANN

Since we are attempting to develop a control function f(θ, v), we need a neural network

with two inputs and one output node. We are developing a feedforward network with one

hidden layer (much like the one in figure 1, except that it only has two inputs instead of

the four picture). We will use the hyperbolic tangent function as our non-linear activation

function. If we let N be the number of hidden neurons in our network then we can see we

need two vectors of weights Wh and Wo. Wh are the weights that affect the inputs to the

hidden layer and Wo are the weights that affect the inputs to the output node. Since there

are two input nodes that must be feed into N hidden nodes, we see that |Wh| = 2N . Since

there are N hidden neurons that feed into just one output node, we see that |Wo| = N . Our

control function is thus expressed

f(θ, v) = tanh(
N∑

k=1

wk
o · (tanh(

N∑
j=1

w2j
h θ + w2j+1

h v))) (4)

where wk
o is the k-th weight in vector Wo and wj

h is the j-th weight in vector Wh.

3.2.2 GA

Let us consider an individual solution to be the pair W = (Wh,Wo). We will construct a

population of size P that is comprised of P invidiuals. We initialize the first generation

with random weights in the domain of [-1,1]. In order to evalute the fitness of an individual

solution, we use the control function generated by its weights W to control the pole. We then
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obtain a value fitness(W ), where fitness(W ) is the number of timesteps of the simulation

the pole’s angle remained within (−θmax, θmax). We then use these fitness values to select

individuals to help produce the new generation. In order to produce an individual in the

new population, we randomly select two individuals from the old population. The probably

that an individual will be selected is from a population P is:

S(W ) =
fitness(W )∑

X∈P fitness(X)
(5)

that is we normalize the probability of W begin chosen with the total fitness score of

the entire population. When two individuals are selected, we produce a child solution using

mutation and crossover operations on their weights. We repeat this until the new generation

has been filled.

We implement mutation and crossover in the following manner:

• Mutation : We assign a mutation rate µ. Such that when we are generating a new

individual, each weight in the new ANN has a µ chance of being assigned a random

value (in the domain [-1,1]).

• Crossover : If mutual on a given weight does not occur, we generate a new weight using

a crossover operation. We generate a random weight σ ∈ (0, 1) such that the weight

for the new individual is wnew = σwa+(1−σ)wb

2 , where wa is the weight for individual

a and wb for individual b. So, we basically take a randomly weighted average between

the two weights.

This process is repeated for some arbitrary number of generations.

3.3 Implementation

I wrote the code to perform the simulation in C code and used OpenGL’s GLUT library to

render the graphics. It was compiled and run in a Linux environment. I have included a

screenshot below.
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Figure 3 - Screenshot of the GA Program

3.4 Results

I proceeded to run 20 trials (each with a new randomly generated initial population), evolv-

ing the populations for 50 generations. I used a timestep of δ = 0.002 and a θmax = 12.5◦.

The pole was initialized with a near zero angle, mp = 0.1, mc = 1, r = 5, and both the pole

and cart were at rest. I used a neural network with 6 hidden units. I averaged the average

fitness value at each generation for each trial. The results are found below:
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Figure 4 - Results with Crossover

Figure 5 - Results without Crossover
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We can see that evolution with crossover performs better than evolution without crossover,

although both types did succeed in generating good control functions.

3.5 Conclusion

We have demonstrated that decent solutions to the pole-balancing problem can be easily

evolved using a genetic algorithm. This feat was accomplished without having any a priori

notion of how the control function should work. The elegance of genetic algorithms is that

you simply need a way to express all your possible solutions and evaluate how fit they are. As

load as you keep favoring the propogation of the more fit solutions and performing random

mutations and crossover to generate new solutions, you will implicitly solve the problem!

We did not need to perform extensive mathematical characterization of the equations of

motion found above; no intelligent design is necessary.

In the following section, we will discuss the possibilities that arise out of the application

of evolutionary computation.

4 Endless Forms

The field of Artificial Life (AL) seeks to evolve unique simulated lifeforms, seeking to de-

velop interesting physical and behavioral adaptations. Virtual environments are created,

complete with a basic set of rules that govern them (often simulated physics). AL applies

GA techniques to evolve simulated creatures that are optimized for these environments.

4.1 Artificial Life

One of the prominent individuals in the artificial life movement is Karl Sims, who generated

a virtual environment in an effort to evolutionarily optimize the design and motions of ar-

tificial creatures that swam in water [8]. Sims simulated fluid mechanics in order to govern

the motion of the simulated creatures, which were composed of a series of jointed boxes. He

also used ANNs to govern the behavior of these simulated creatures providing the appropri-

ate swimming behaviors, or perhaps in the worst cases: futile spastic motions. The fitness
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function used was maximum velocity, so those who could swim faster were evolutionarily

favored. Sims’ simulations were successful in generating a wide variety of unique solutions

to the problem of swimming. For instance, some of the evolved individuals resembled water

snakes or crabs, whereas others generated totally unfamiliar body structures and swimming

behaviors, but were still nonetheless effective swimmers [8]. Numerous other studies have

been conducted applying similar techniques to other virtual scenarios, e.g. Walking on land,

predator-prey models.

Figure 6 - A example of Karl Sim’s swimming snakes1.

4.2 A New Frontier

Having discussed the efficacies of natural evolution and evolutionary computation, we are

left with an exciting possibility involving our abilities to simulate and approximate the nat-

ural world. How can we characterize the natural world? Our physical existence is governed

by a complex set of physical laws (gravity, electromagnetism, etc). Our physical universe

is comprised of various subatomic particles, the material that these physical laws operate

upon. Changes in the universe are manifested by a progression though a temporal dimen-

sion, time. The interactions of these physical laws, the material building blocks, and time

constitute a causal architecture that gives rise to all the physical phenomena in our uni-
1http://www.genarts.com/karl/evolved-virtual-creatures.html
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verse. That eventually some self-organizing, self-replicating structures arose, giving birth to

primitive life. These self-organizing structures and physical phenomena produce by these

lower level emergent properties establish a causal architecture that yields the evolutionary

process. This process of self-replication was governed by the evolutionary process, and this

evolutionary process eventually generated humans and human cognition. This characteri-

zation of the natural world constitutes something we can pedantically deign an Existential

Paradigm. Therefore, a set of simulated physics, simulated building blocks, and a simu-

lated progression through time would constitute a Existential Simulacrum Paradigm. We

can classify such as Karl Sims swimming creatures experiment, as an implementation of

an existential simulacrum paradigm. He utilized a set of simulated physical laws (fluid dy-

namics), with a set of basic building structures (boxes), and of course simulated the system

through time. Yet, we can see that this existential simulacrum paradigm is tremendously

simple compared to the actual existential paradigm. What would happen if we implemented

something more complex?

Thus I propose the following Gedankenexperiment. Assume that you had an effectively

unlimited about of computation power at their disposal. You would then be enabled to

closely simulate the complex interactions that occur in nature. Therefore, the question

arises, when our Existential Simulacrum Paradigm, implemented on our powerful computa-

tion system approaches the same level of detail as the actual Existential Paradigm, would

the systems that emerge through the resulting evolutionary processes be correspondingly

complex? Consequently, would the intelligent simulated lifeforms, be corresponding more

life-like? Would human-like beings eventually emerge? Would their brains, be anything like

a human brain? Could we use this simulation, if not a tool to create artificial life itself, as a

blueprint to engineer it in the real-world? Certainly, such a fantastical possibility succeeds in

raising innumerable questions such as those aforementioned. I would be inclined to say yes to

all those inquiries, given what we know about our own existence, and the hypothetical sim-

ilarity of the simulated existence we create. Yet, the genesis of artificial intelligence and life

in an Existential Simulacrum Paradigm, like all emergent phenomena, is to be unexpected.

In order to allay our curiosity, we must actively implement and study such a simulated
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environment. Unfortunately, we do not have enough computational resources to implement

this Existential Simulacrum Paradigm. We cannot even build high-fidelity simulations of

meteorological processes to predict the weather, how can be expect to model the cosmolog-

ical workings of the universe from the quark up? Indeed, even humanity’s understanding of

the laws of the physical universe is also an ever-evolving and improving endeavor. Perhaps,

then, it is a foolish activity to muse over such a hypothetical and far-distant possibility.

Such a comprehensive and holistic simulation of the physical world is certainly not possible

in the near-future. Yet, despite this pessimistic outlook, we may acknowledge that work

in studying Existential Simulacrum Paradigms (e.g. Karl Sim’s water snakes) is ongoing

ventureone that is yielding fascinating results. Knowing, then, what has been accomplished,

what lies ahead, and how far we have to go is perhaps is the most tantalizing prospect in

evolutionary computation.
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